The pieces we ordered to build the volumetric display for Chemistry visualization finally arrived!  With the help of CJ, Nathan, and Rebekah (students), Max (Chemistry) got everything cabled up…


Using bits from our original prototype, Max fired up a molecule, and it works!

Prototype, a Long Time in the Making

In order to better enjoy the three dimensional holographic molecules, we quickly cooked up a little blanket fort…

Building the Fort

Be Present

It Works!

Now that we have the parts in place, we can move on to developing the enclosure and making the system portable. It’s great to have the space, tools, and people to be able to turn good ideas into working prototypes, and we’re looking forward to making quick progress on this one (finally).

Kathleen Kirklin (FLC’s Interim President) took the robot for a spin in the library other day.

Kathleen Kirklin Drives Robot

I also had the chance to share with Kathleen and Gary Hartely (Dean) progress on the aquaponics project. The plan is to have the screen display some rolling information about the biological and chemical processes in play, interspersed with footage from the live fishcam that will be inside the tank. Pressing the big green arcade button will bring up charts and graphs of the in-tank (temp, pH, electroconductivity) and out-of-tank (temp, humidity, and perhaps one or two others) sensor data.

Robot Observation

Lots to do, but within the next couple of weeks there should be some serious development work on all parts of the project…

Photos courtesy of Tony Humphreys.

Working on a new prototype, combining the models from 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry (Kaliakin, Zaari, and Varganov) and something like this:

Max Mahoney (Chemistry) printed one of the models from the aforementioned paper, and we got to discussing how we might fill it with sand and inject some energy in the system to motivate the sand to shift around to demonstrate concepts of chemical reaction kinetics and dynamics.


I found a Sonic Ghost VX-GH72 Electro-Mechanical Audio Transducer in the workshop. I purchased it some years ago hoping to replicate a sweet project I once saw at Maker Faire, developed by Sasha Leitman and involving 50 gallon metal drums with contact mics attached, with the drums acting as…well…drums, but also acting as speakers.  Anyhow, we hooked the transducer up to a piece of metal and threw some sand from the aquaponics project on there, and played around with different frequencies.


We ended up breaking the transducer, and substituting a speaker, upon which we place the metal sign, with the model taped to the top.


We were able to get the sand to bounce out of the lowest spot and into one of the higher ones, so the rough prototype is showing promise…

Sean Fannon (Psychology) and I secured a small grant to get our hands on an OpenBCI, which is an open source brain-computer interface, complete with a headset that can be printed on a 3D printer.  Sean plans to use the device to enable students to do some fairly sophisticated brain research.  Fortunately, the new Ultimaker 2+ Extended has a sufficiently large build envelope, so I set it up to print half of the headset overnight, and watched it on YouTube in an obsessive way using the Open Broadcaster setup.

Printing OpenBCI Mark III

Came in this morning, and it all seems to have printed well. In what is a first, I think I might not have enough PLA on the spool to finish the job.  Unfortunately, the Ultimaker uses the fat stuff (2.85 mm), and the Printrbot uses 1.75 mm, which I’ve got a lot of. I read somewhere that the Ultimaker can be tweaked to run the smaller filament, so I might just have to give that a shot.  Some of the smaller bits I plan to use to test the Form 2 that should arrive some time in early July.

OpenBCI Ultracortex Mark III

Working with Max Mahoney (Chemistry) on a molecule visualizer, and we had the opportunity to throw the prototype on a 30″ monitor. The results are encouraging!

30" Monitor-scale Volumetric Projection Prototype

30" Monitor-scale Volumetric Projection Prototype

30" Monitor-scale Volumetric Projection Prototype

Next up: Max is going to render a custom molecule video.  We’ll format that for the system, and assuming all goes as planned, work out the enclosure issues, which will likely involve some CNC work.

The gear is beginning to roll in! As with any reasonably complex endeavor at any reasonably complex institution, procuring the “stuff” to make a project work takes a great deal of time and energy – lots of rules and forms and budget strings and signatures and hoops to be jumped through. For this particular project, the electronics – chiefly Arduino shields and associated sensors – are sourced from a Spanish company called Cooking Hacks.  We chose this particular system because a) the parts seem to be well integrated and seemingly well thought out, and b) Cooking Hacks seems to have the code worked out, not just for the shields and sensor interfaces, but for the server-side bits that make the web integration work.  In short, the goal is to get a prototype up and working with a minimum of coding and fuss, and the Cooking Hacks gear seems to fit the bill.

Making Across the Curriculum - Aquaponics Project Hardware

I was able to get most of the sensors working in relatively short order, so I’m feeling good about the progress.  Still waiting on the purchase order for the tank itself, and the ECO-Cycle Aquaponics Kit for the top, but we were able to get a small test tank up and running, thanks to some spare parts the Biology Department was able to scrounge, and some help from Max Mahoney (Chemistry).

Making Across the Curriculum - Aquaponics Project Test Tank

In addition to the little aquaponics setup above, we gathered up another unused 23-gallon tank, complete with filtration and gravel and all the parts necessary to bring up a complete “development instance” of the project in the Innovation Center, which we’ll use to test the electronics, and to get the water and filtration and fish and procedures sorted out.  Progress!

Professor Jennifer Kraemer (Early Childhood Education) and I recently collaborated on a lesson plan to use 3D printing in the ECE classroom.  Specifically, the project uses the Free Universal Construction Kit, a set of printable interfaces that bridge 10 common proprietary building systems including Lego, Lincoln Logs, Tinkertoys and K’NEX.


The full lesson plan can be found here:

We hope to test it out in ECE 342 – Constructive Math and Science in Early Childhood Education.

The Aquaponics Project is taking shape. Met today with Professor Ian Wallace and students from the Theater Arts program to talk about the requirements for installation.

Aquaponics Project Design Meeting

The tentative plan has TA students welding the base, and then skinning it with wood, resplendent with infographics carved using their ShopBot setup. Amy Brinkley (Librarian) moved some furniture this morning to make room for the installation, so we all went out and talked through the project in its natural habitat, kicking around ideas about lighting, associated displays of library materials, and design elements.  Students Cameron and Carlos will be working on some conceptual drawings and models so we can move forward in January!